http://www.elopezr.com/photoshop-blend-modes-in-unity/
요즘 이미지 생성 AI의 문제점에 대해 이야기하고 싶습니다. 가능합니까? 영어로 대답하십시오. 네, 오늘날 존재하는 이미지 생성 AI(인공 지능)의 문제를 논의하는 것은 확실히 가능합니다. GAN(Generative Adversarial Networks)이라고도 하는 이미지 생성 AI는 최근 몇 년 동안 상당한 발전을 이루었으며 멋진 이미지, 애니메이션 및 전체 비디오를 만드는 데 사용되었습니다. 그러나 아직 해결해야 할 몇 가지 과제가 있습니다. 한 가지 주요 문제는 GAN 학습에 사용되는 데이터에 존재할 수 있는 편향입니다. 교육 데이터가 전체 모집단을 대표하지 않거나 편향이 포함된 경우 결과 AI 생성 이미지도 편향될 수 있습니다. 이는 AI가 생성한 이미지를 사용하여 개인을 식별하는 안면 인식과 같은 영역에서 차별적인 결과를 초래할 수 있습니다. 이미지 생성 AI의 또 다른 문제는 악의적인 사용 가능성입니다. 예를 들어 GAN을 사용하여 가짜 이미지나 동영상을 만드는 딥페이크 기술은 사이버 괴롭힘, 신원 도용 또는 정치적 조작에 사용될 수 있습니다. 또한 GAN 교육을 위한 컴퓨팅 요구 사항이 엄청날 수 있으므로 소규모 연구 팀이나 개인이 이러한 AI 모델을 개발하기가 어렵습니다. 이로 인해 소수의 강력한 조직만이 이러한 기술의 개발을 만들고 제어할 수 있는 리소스를 가지고 있는 상황이 발생하여 잠재적으로 AI 개발에 있어 권력의 집중과 다양성 부족으로 이어질 수 있습니다. 요약하면, 이미지 생성 AI는 최근 몇 년 동안 인상적인 발전을 이루었지만 여전히 해결해야 할 몇 가지 문제가 있습니다. 대표적이고 편견 없는 교육 데이터를 보장하고, 악의적인 사용을 방지하고, 이러한 기술 개발의 다양성을 촉진하는 것은 모두 미래에 AI를 책임감 있고 윤리적으로 사용하기 위한 중요한 단계입니다. 그렇다, 크레이터, 특히 저작권 문제에서 자유로울 수 없다. 게임을 위한 리소스 제작에 사용 정도를 고려하는데, 이 경우 저작권 문제에 대한 명확성 부족이 사용성에 큰 문제...
댓글
댓글 쓰기